MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. ACI-ASTM CC50 Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
210
Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 220 to 300
430

Thermal Properties

Latent Heat of Fusion, J/g 550
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1070
170

Common Calculations

Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 54
26
Strength to Weight: Axial, points 24 to 33
16
Strength to Weight: Bending, points 32 to 39
17
Thermal Diffusivity, mm2/s 60
4.5
Thermal Shock Resistance, points 10 to 14
14

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
62.9 to 74
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0