MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. ASTM Grade LCC Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while ASTM grade LCC steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is ASTM grade LCC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
170
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5 to 13
25
Fatigue Strength, MPa 62 to 100
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 220 to 300
570
Tensile Strength: Yield (Proof), MPa 140 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1070
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
260
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 24 to 33
20
Strength to Weight: Bending, points 32 to 39
20
Thermal Diffusivity, mm2/s 60
13
Thermal Shock Resistance, points 10 to 14
17

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
96.9 to 100
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11.5
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 1.0