MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. AWS ERNiCrMo-10

EN AC-43500 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrMo-10 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is AWS ERNiCrMo-10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 4.5 to 13
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 220 to 300
790

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Melting Completion (Liquidus), °C 600
1550
Melting Onset (Solidus), °C 590
1490
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
300

Common Calculations

Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 24 to 33
25
Strength to Weight: Bending, points 32 to 39
21
Thermal Diffusivity, mm2/s 60
2.7
Thermal Shock Resistance, points 10 to 14
21

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.25
2.0 to 6.0
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.5
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
49 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 11.5
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.5