MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. EN 2.4889 Nickel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.5 to 13
39
Fatigue Strength, MPa 62 to 100
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220 to 300
720
Tensile Strength: Yield (Proof), MPa 140 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 550
350
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 600
1350
Melting Onset (Solidus), °C 590
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1070
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
220
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
180
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 24 to 33
25
Strength to Weight: Bending, points 32 to 39
22
Thermal Diffusivity, mm2/s 60
3.4
Thermal Shock Resistance, points 10 to 14
19

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.25
21 to 25
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 11.5
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0