MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. CC140C Copper

EN AC-43500 aluminum belongs to the aluminum alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
110
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 4.5 to 13
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 220 to 300
340
Tensile Strength: Yield (Proof), MPa 140 to 170
230

Thermal Properties

Latent Heat of Fusion, J/g 550
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 600
1100
Melting Onset (Solidus), °C 590
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 140
310
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
77
Electrical Conductivity: Equal Weight (Specific), % IACS 130
78

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
34
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
220
Stiffness to Weight: Axial, points 16
7.3
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 24 to 33
10
Strength to Weight: Bending, points 32 to 39
12
Thermal Diffusivity, mm2/s 60
89
Thermal Shock Resistance, points 10 to 14
12

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 0 to 0.050
98.8 to 99.6
Iron (Fe), % 0 to 0.25
0
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0
Silicon (Si), % 9.0 to 11.5
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0