MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. CC380H Copper-nickel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
80
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 4.5 to 13
26
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
47
Tensile Strength: Ultimate (UTS), MPa 220 to 300
310
Tensile Strength: Yield (Proof), MPa 140 to 170
120

Thermal Properties

Latent Heat of Fusion, J/g 550
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 600
1130
Melting Onset (Solidus), °C 590
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 140
46
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1070
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
65
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
59
Stiffness to Weight: Axial, points 16
7.8
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 24 to 33
9.8
Strength to Weight: Bending, points 32 to 39
12
Thermal Diffusivity, mm2/s 60
13
Thermal Shock Resistance, points 10 to 14
11

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0 to 0.010
Copper (Cu), % 0 to 0.050
84.5 to 89
Iron (Fe), % 0 to 0.25
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 9.0 to 11.5
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0 to 0.5
Residuals, % 0 to 0.15
0