MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. Grade 200 Maraging Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while grade 200 maraging steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is grade 200 maraging steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5 to 13
9.1 to 18
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 220 to 300
970 to 1500
Tensile Strength: Yield (Proof), MPa 140 to 170
690 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 550
260
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.8
4.5
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
1240 to 5740
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 24 to 33
33 to 51
Strength to Weight: Bending, points 32 to 39
27 to 35
Thermal Shock Resistance, points 10 to 14
29 to 45

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0.050 to 0.15
Boron (B), % 0
0 to 0.0030
Calcium (Ca), % 0
0 to 0.050
Carbon (C), % 0
0 to 0.030
Cobalt (Co), % 0
8.0 to 9.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
67.8 to 71.8
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.1
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
17 to 19
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 9.0 to 11.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.15 to 0.25
Zinc (Zn), % 0 to 0.070
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.15
0