MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. Sintered 6061 Aluminum

Both EN AC-43500 aluminum and sintered 6061 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 4.5 to 13
0.5 to 6.0
Fatigue Strength, MPa 62 to 100
32 to 62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 220 to 300
83 to 210
Tensile Strength: Yield (Proof), MPa 140 to 170
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 550
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
52
Electrical Conductivity: Equal Weight (Specific), % IACS 130
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
28 to 280
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 24 to 33
8.6 to 21
Strength to Weight: Bending, points 32 to 39
16 to 29
Thermal Diffusivity, mm2/s 60
81
Thermal Shock Resistance, points 10 to 14
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
96 to 99.4
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.25
0
Magnesium (Mg), % 0.1 to 0.6
0.4 to 1.2
Manganese (Mn), % 0.4 to 0.8
0
Silicon (Si), % 9.0 to 11.5
0.2 to 0.8
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 1.5

Comparable Variants