MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. S35500 Stainless Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.5 to 13
14
Fatigue Strength, MPa 62 to 100
690 to 730
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 220 to 300
1330 to 1490
Tensile Strength: Yield (Proof), MPa 140 to 170
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 550
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.5
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
3610 to 4100
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 24 to 33
47 to 53
Strength to Weight: Bending, points 32 to 39
34 to 37
Thermal Diffusivity, mm2/s 60
4.4
Thermal Shock Resistance, points 10 to 14
44 to 49

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
73.2 to 77.7
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 11.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0

Comparable Variants