MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. S44537 Stainless Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
180
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.5 to 13
21
Fatigue Strength, MPa 62 to 100
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 220 to 300
510
Tensile Strength: Yield (Proof), MPa 140 to 170
360

Thermal Properties

Latent Heat of Fusion, J/g 550
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
21
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
3.4
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
95
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
320
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 24 to 33
18
Strength to Weight: Bending, points 32 to 39
18
Thermal Diffusivity, mm2/s 60
5.6
Thermal Shock Resistance, points 10 to 14
17

Alloy Composition

Aluminum (Al), % 86.4 to 90.5
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.25
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 9.0 to 11.5
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0 to 0.2
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0