MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. 242.0 Aluminum

Both EN AC-44000 aluminum and 242.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
70 to 110
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 7.3
0.5 to 1.5
Fatigue Strength, MPa 64
55 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180
180 to 290
Tensile Strength: Yield (Proof), MPa 86
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 560
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 590
530
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 140
130 to 170
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
33 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 130
96 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.5
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
1.3 to 3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 51
110 to 340
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
45
Strength to Weight: Axial, points 20
16 to 26
Strength to Weight: Bending, points 28
23 to 32
Thermal Diffusivity, mm2/s 61
50 to 62
Thermal Shock Resistance, points 8.4
8.0 to 13

Alloy Composition

Aluminum (Al), % 87.1 to 90
88.4 to 93.6
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
3.5 to 4.5
Iron (Fe), % 0 to 0.19
0 to 1.0
Magnesium (Mg), % 0 to 0.45
1.2 to 1.8
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 10 to 11.8
0 to 0.7
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.070
0 to 0.35
Residuals, % 0
0 to 0.15