MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. Type 3 Magnetic Alloy

EN AC-44000 aluminum belongs to the aluminum alloys classification, while Type 3 magnetic alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is Type 3 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
180
Elongation at Break, % 7.3
43
Fatigue Strength, MPa 64
170
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
70
Tensile Strength: Ultimate (UTS), MPa 180
550
Tensile Strength: Yield (Proof), MPa 86
210

Thermal Properties

Latent Heat of Fusion, J/g 560
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 590
1370
Melting Onset (Solidus), °C 590
1320
Specific Heat Capacity, J/kg-K 910
450
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.8
8.7
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1070
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
190
Resilience: Unit (Modulus of Resilience), kJ/m3 51
120
Stiffness to Weight: Axial, points 16
12
Stiffness to Weight: Bending, points 55
22
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
17
Thermal Shock Resistance, points 8.4
18

Alloy Composition

Aluminum (Al), % 87.1 to 90
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 3.0
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
4.0 to 6.0
Iron (Fe), % 0 to 0.19
9.9 to 19
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
75 to 78
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 10 to 11.8
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0