MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. S44725 Stainless Steel

EN AC-44000 aluminum belongs to the aluminum alloys classification, while S44725 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 7.3
22
Fatigue Strength, MPa 64
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 180
500
Tensile Strength: Yield (Proof), MPa 86
310

Thermal Properties

Latent Heat of Fusion, J/g 560
290
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.5
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1070
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
99
Resilience: Unit (Modulus of Resilience), kJ/m3 51
240
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 61
4.6
Thermal Shock Resistance, points 8.4
16

Alloy Composition

Aluminum (Al), % 87.1 to 90
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
25 to 28.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
67.6 to 73.5
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10 to 11.8
0 to 0.040
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0 to 0.26
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0