MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. S45000 Stainless Steel

EN AC-44000 aluminum belongs to the aluminum alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
280 to 410
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 7.3
6.8 to 14
Fatigue Strength, MPa 64
330 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180
980 to 1410
Tensile Strength: Yield (Proof), MPa 86
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 560
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 51
850 to 4400
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
35 to 50
Strength to Weight: Bending, points 28
28 to 36
Thermal Diffusivity, mm2/s 61
4.5
Thermal Shock Resistance, points 8.4
33 to 47

Alloy Composition

Aluminum (Al), % 87.1 to 90
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 0 to 0.050
1.3 to 1.8
Iron (Fe), % 0 to 0.19
72.1 to 79.3
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10 to 11.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0