MakeItFrom.com
Menu (ESC)

EN AC-44100 Aluminum vs. C17510 Copper

EN AC-44100 aluminum belongs to the aluminum alloys classification, while C17510 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44100 aluminum and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 4.9
5.4 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 180
310 to 860
Tensile Strength: Yield (Proof), MPa 87
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 570
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 590
1070
Melting Onset (Solidus), °C 580
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 120
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.5
8.9
Embodied Carbon, kg CO2/kg material 7.7
4.2
Embodied Energy, MJ/kg 140
65
Embodied Water, L/kg 1050
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 53
64 to 2410
Stiffness to Weight: Axial, points 16
7.4
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 19
9.7 to 27
Strength to Weight: Bending, points 27
11 to 23
Thermal Diffusivity, mm2/s 58
60
Thermal Shock Resistance, points 8.2
11 to 30

Alloy Composition

Aluminum (Al), % 84.4 to 89.5
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.15
95.9 to 98.4
Iron (Fe), % 0 to 0.65
0 to 0.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
1.4 to 2.2
Silicon (Si), % 10.5 to 13.5
0 to 0.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.5