MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. 707.0 Aluminum

Both EN AC-44200 aluminum and 707.0 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 6.2
1.7 to 3.4
Fatigue Strength, MPa 63
75 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
270 to 300
Tensile Strength: Yield (Proof), MPa 86
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 570
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
37
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.9
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 51
210 to 430
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
47
Strength to Weight: Axial, points 20
26 to 29
Strength to Weight: Bending, points 28
32 to 34
Thermal Diffusivity, mm2/s 59
58
Thermal Shock Resistance, points 8.4
12 to 13

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
90.5 to 93.6
Chromium (Cr), % 0
0.2 to 0.4
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.55
0 to 0.8
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0 to 0.35
0.4 to 0.6
Silicon (Si), % 10.5 to 13.5
0 to 0.2
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.1
4.0 to 4.5
Residuals, % 0
0 to 0.15