MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. ACI-ASTM CC50 Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
210
Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 180
430

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 910
490
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.5
7.6
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1050
170

Common Calculations

Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
26
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 28
17
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 8.4
14

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
62.9 to 74
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0