MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. AISI 403 Stainless Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2
16 to 25
Fatigue Strength, MPa 63
200 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180
530 to 780
Tensile Strength: Yield (Proof), MPa 86
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
28
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1050
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 51
210 to 840
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
19 to 28
Strength to Weight: Bending, points 28
19 to 24
Thermal Diffusivity, mm2/s 59
7.6
Thermal Shock Resistance, points 8.4
20 to 29

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
84.7 to 88.5
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0