MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. EN 1.1203 Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while EN 1.1203 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2
12 to 15
Fatigue Strength, MPa 63
210 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 180
690 to 780
Tensile Strength: Yield (Proof), MPa 86
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1050
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 51
310 to 610
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 20
25 to 28
Strength to Weight: Bending, points 28
22 to 24
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 8.4
22 to 25

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
97.1 to 98.9
Manganese (Mn), % 0 to 0.35
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0