MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. EN 1.4410 Stainless Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while EN 1.4410 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
260
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 6.2
24
Fatigue Strength, MPa 63
410
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 180
850
Tensile Strength: Yield (Proof), MPa 86
600

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
4.0
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 1050
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
180
Resilience: Unit (Modulus of Resilience), kJ/m3 51
880
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
30
Strength to Weight: Bending, points 28
26
Thermal Diffusivity, mm2/s 59
4.0
Thermal Shock Resistance, points 8.4
23

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
58.1 to 66.8
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0