MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. EN 1.4518 Stainless Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while EN 1.4518 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.2
34
Fatigue Strength, MPa 63
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 180
490
Tensile Strength: Yield (Proof), MPa 86
210

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
4.0
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 1050
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
140
Resilience: Unit (Modulus of Resilience), kJ/m3 51
100
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 59
4.1
Thermal Shock Resistance, points 8.4
14

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
61.4 to 70
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0