MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. EN 1.4565 Stainless Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while EN 1.4565 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is EN 1.4565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 6.2
35
Fatigue Strength, MPa 63
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 180
880
Tensile Strength: Yield (Proof), MPa 86
480

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.5
7.9
Embodied Carbon, kg CO2/kg material 7.7
5.4
Embodied Energy, MJ/kg 140
74
Embodied Water, L/kg 1050
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
260
Resilience: Unit (Modulus of Resilience), kJ/m3 51
550
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 28
26
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 8.4
21

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
41.2 to 50.7
Manganese (Mn), % 0 to 0.35
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 19
Niobium (Nb), % 0
0 to 0.15
Nitrogen (N), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0