MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. SAE-AISI 1552 Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1552 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is SAE-AISI 1552 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2
11 to 14
Fatigue Strength, MPa 63
290 to 400
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 180
760 to 840
Tensile Strength: Yield (Proof), MPa 86
460 to 650

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1050
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
81 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 51
560 to 1130
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 20
27 to 30
Strength to Weight: Bending, points 28
24 to 25
Thermal Diffusivity, mm2/s 59
14
Thermal Shock Resistance, points 8.4
26 to 29

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0.47 to 0.55
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
97.9 to 98.3
Manganese (Mn), % 0 to 0.35
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0