MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. SAE-AISI 5160 Steel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
200 to 340
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2
12 to 18
Fatigue Strength, MPa 63
180 to 650
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180
660 to 1150
Tensile Strength: Yield (Proof), MPa 86
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1050
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 51
200 to 2700
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 20
23 to 41
Strength to Weight: Bending, points 28
22 to 31
Thermal Diffusivity, mm2/s 59
12
Thermal Shock Resistance, points 8.4
19 to 34

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
97.1 to 97.8
Manganese (Mn), % 0 to 0.35
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0