MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. C19010 Copper

EN AC-44200 aluminum belongs to the aluminum alloys classification, while C19010 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 6.2
2.4 to 22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 180
330 to 640
Tensile Strength: Yield (Proof), MPa 86
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 570
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 590
1060
Melting Onset (Solidus), °C 580
1010
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
48 to 63
Electrical Conductivity: Equal Weight (Specific), % IACS 130
48 to 63

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.5
8.9
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1050
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 51
290 to 1680
Stiffness to Weight: Axial, points 16
7.3
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 20
10 to 20
Strength to Weight: Bending, points 28
12 to 18
Thermal Diffusivity, mm2/s 59
75
Thermal Shock Resistance, points 8.4
12 to 23

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Copper (Cu), % 0 to 0.050
97.3 to 99.04
Iron (Fe), % 0 to 0.55
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0
0.8 to 1.8
Phosphorus (P), % 0
0.010 to 0.050
Silicon (Si), % 10.5 to 13.5
0.15 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5