MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. C44400 Brass

EN AC-44200 aluminum belongs to the aluminum alloys classification, while C44400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is C44400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 180
350
Tensile Strength: Yield (Proof), MPa 86
120

Thermal Properties

Latent Heat of Fusion, J/g 570
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 590
940
Melting Onset (Solidus), °C 580
900
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.5
8.3
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1050
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 51
65
Stiffness to Weight: Axial, points 16
7.2
Stiffness to Weight: Bending, points 55
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 28
13
Thermal Diffusivity, mm2/s 59
35
Thermal Shock Resistance, points 8.4
12

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Antimony (Sb), % 0
0.020 to 0.1
Copper (Cu), % 0 to 0.050
70 to 73
Iron (Fe), % 0 to 0.55
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.35
0
Silicon (Si), % 10.5 to 13.5
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
25.2 to 29.1
Residuals, % 0
0 to 0.4