MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. N06455 Nickel

EN AC-44200 aluminum belongs to the aluminum alloys classification, while N06455 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 6.2
47
Fatigue Strength, MPa 63
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 180
780
Tensile Strength: Yield (Proof), MPa 86
330

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 590
1510
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 910
430
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.5
8.8
Embodied Carbon, kg CO2/kg material 7.7
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1050
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
300
Resilience: Unit (Modulus of Resilience), kJ/m3 51
260
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
23
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 59
2.7
Thermal Shock Resistance, points 8.4
24

Alloy Composition

Aluminum (Al), % 85.2 to 89.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
14 to 18
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
0 to 3.0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 0
58.1 to 72
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0 to 0.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0