MakeItFrom.com
Menu (ESC)

EN AC-44300 Aluminum vs. EN 2.4608 Nickel

EN AC-44300 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44300 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 100
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.5
8.5
Embodied Carbon, kg CO2/kg material 7.7
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1050
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 150
180
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
23
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 36
19
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 84.3 to 89.5
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
11.4 to 23.8
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 13.5
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0