MakeItFrom.com
Menu (ESC)

EN AC-44300 Aluminum vs. EN 2.4889 Nickel

EN AC-44300 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44300 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
39
Fatigue Strength, MPa 100
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 270
720
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 570
350
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.5
8.0
Embodied Carbon, kg CO2/kg material 7.7
6.9
Embodied Energy, MJ/kg 140
98
Embodied Water, L/kg 1050
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 150
180
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 84.3 to 89.5
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 1.0
21 to 25
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10.5 to 13.5
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0