MakeItFrom.com
Menu (ESC)

EN AC-44300 Aluminum vs. C90700 Bronze

EN AC-44300 aluminum belongs to the aluminum alloys classification, while C90700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44300 aluminum and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
90
Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.1
12
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 270
330
Tensile Strength: Yield (Proof), MPa 150
180

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
1000
Melting Onset (Solidus), °C 580
830
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
71
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.7
3.7
Embodied Energy, MJ/kg 140
60
Embodied Water, L/kg 1050
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
34
Resilience: Unit (Modulus of Resilience), kJ/m3 150
150
Stiffness to Weight: Axial, points 16
6.9
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 29
10
Strength to Weight: Bending, points 36
12
Thermal Diffusivity, mm2/s 58
22
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 84.3 to 89.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
88 to 90
Iron (Fe), % 0 to 1.0
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 10.5 to 13.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0
0 to 0.6