MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. 5251 Aluminum

Both EN AC-44400 aluminum and 5251 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is 5251 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
44 to 79
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 4.1
2.0 to 19
Fatigue Strength, MPa 79
59 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 210
180 to 280
Tensile Strength: Yield (Proof), MPa 110
67 to 250

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
5.4 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 85
33 to 450
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 23
18 to 29
Strength to Weight: Bending, points 31
26 to 35
Thermal Diffusivity, mm2/s 60
61
Thermal Shock Resistance, points 9.8
7.9 to 13

Alloy Composition

Aluminum (Al), % 87.1 to 92
95.5 to 98.2
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.65
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
1.7 to 2.4
Manganese (Mn), % 0 to 0.5
0.1 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 8.0 to 11
0 to 0.4
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 0 to 0.15
0 to 0.15
Residuals, % 0
0 to 0.15