MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. 771.0 Aluminum

Both EN AC-44400 aluminum and 771.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 4.1
1.7 to 6.5
Fatigue Strength, MPa 79
92 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 210
250 to 370
Tensile Strength: Yield (Proof), MPa 110
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 540
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 590
620
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
140 to 150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 85
310 to 900
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
46
Strength to Weight: Axial, points 23
23 to 35
Strength to Weight: Bending, points 31
29 to 39
Thermal Diffusivity, mm2/s 60
54 to 58
Thermal Shock Resistance, points 9.8
11 to 16

Alloy Composition

Aluminum (Al), % 87.1 to 92
90.5 to 92.5
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0.8 to 1.0
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 8.0 to 11
0 to 0.15
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0.1 to 0.2
Zinc (Zn), % 0 to 0.15
6.5 to 7.5
Residuals, % 0
0 to 0.15