MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. ASTM A182 Grade F12 Class 1

EN AC-44400 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F12 class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is ASTM A182 grade F12 class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
150
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.1
23
Fatigue Strength, MPa 79
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 210
470
Tensile Strength: Yield (Proof), MPa 110
250

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1080
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
91
Resilience: Unit (Modulus of Resilience), kJ/m3 85
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 31
17
Thermal Diffusivity, mm2/s 60
12
Thermal Shock Resistance, points 9.8
14

Alloy Composition

Aluminum (Al), % 87.1 to 92
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
0.8 to 1.3
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.65
96.8 to 98.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0