MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. ASTM Grade HD Steel

EN AC-44400 aluminum belongs to the aluminum alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.1
9.1
Fatigue Strength, MPa 79
140
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 210
590
Tensile Strength: Yield (Proof), MPa 110
270

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
44
Resilience: Unit (Modulus of Resilience), kJ/m3 85
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 54
26
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 9.8
19

Alloy Composition

Aluminum (Al), % 87.1 to 92
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.65
58.4 to 70
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0