MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. SAE-AISI S6 Steel

EN AC-44400 aluminum belongs to the aluminum alloys classification, while SAE-AISI S6 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is SAE-AISI S6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 210
670 to 1920

Thermal Properties

Latent Heat of Fusion, J/g 540
290
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
41
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1080
56

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 23
24 to 70
Strength to Weight: Bending, points 31
22 to 45
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 9.8
22 to 64

Alloy Composition

Aluminum (Al), % 87.1 to 92
0
Carbon (C), % 0
0.4 to 0.5
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.65
92.8 to 94.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.2 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 11
2.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0