MakeItFrom.com
Menu (ESC)

EN AC-44400 Aluminum vs. N08028 Stainless Steel

EN AC-44400 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44400 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61
180
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.1
45
Fatigue Strength, MPa 79
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 210
570
Tensile Strength: Yield (Proof), MPa 110
240

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.8
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1080
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.3
210
Resilience: Unit (Modulus of Resilience), kJ/m3 85
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 9.8
12

Alloy Composition

Aluminum (Al), % 87.1 to 92
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.1
0.6 to 1.4
Iron (Fe), % 0 to 0.65
29 to 40.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.050
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0