MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. ASTM A387 Grade 11 Steel

EN AC-44500 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 11 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is ASTM A387 grade 11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
25
Fatigue Strength, MPa 110
200 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 270
500 to 600
Tensile Strength: Yield (Proof), MPa 160
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1050
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
100 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
200 to 320
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 29
18 to 21
Strength to Weight: Bending, points 36
18 to 20
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 13
15 to 18

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.0
96.2 to 97.6
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0