MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. EN 1.3553 Steel

EN AC-44500 aluminum belongs to the aluminum alloys classification, while EN 1.3553 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is EN 1.3553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
220
Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 270
720

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 170
540
Melting Completion (Liquidus), °C 590
1620
Melting Onset (Solidus), °C 580
1570
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.5
8.4
Embodied Carbon, kg CO2/kg material 7.7
8.5
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1050
96

Common Calculations

Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
23
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 36
21
Thermal Diffusivity, mm2/s 57
6.4
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Carbon (C), % 0
0.78 to 0.86
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 1.0
80.7 to 83.7
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0 to 0.4
Molybdenum (Mo), % 0
4.7 to 5.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
6.0 to 6.7
Vanadium (V), % 0
1.7 to 2.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0