MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. EN 1.4460 Stainless Steel

EN AC-44500 aluminum belongs to the aluminum alloys classification, while EN 1.4460 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is EN 1.4460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
220
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1
21
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 270
750
Tensile Strength: Yield (Proof), MPa 160
510

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.5
7.7
Embodied Carbon, kg CO2/kg material 7.7
3.4
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 1050
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
640
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 29
27
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 57
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.0
60.2 to 69.2
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 2.0
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0