MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. EN 1.5520 Steel

EN AC-44500 aluminum belongs to the aluminum alloys classification, while EN 1.5520 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is EN 1.5520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
11 to 21
Fatigue Strength, MPa 110
210 to 300
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 270
410 to 1410
Tensile Strength: Yield (Proof), MPa 160
300 to 480

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1050
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
42 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240 to 600
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 29
15 to 50
Strength to Weight: Bending, points 36
16 to 36
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 13
12 to 41

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.0
97.7 to 98.9
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0