MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. CC332G Bronze

EN AC-44500 aluminum belongs to the aluminum alloys classification, while CC332G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
130
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.1
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 570
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 590
1060
Melting Onset (Solidus), °C 580
1010
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.5
8.3
Embodied Carbon, kg CO2/kg material 7.7
3.4
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 1050
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270
Stiffness to Weight: Axial, points 16
7.7
Stiffness to Weight: Bending, points 55
20
Strength to Weight: Axial, points 29
21
Strength to Weight: Bending, points 36
19
Thermal Diffusivity, mm2/s 57
12
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
8.5 to 10.5
Copper (Cu), % 0 to 0.2
80 to 86
Iron (Fe), % 0 to 1.0
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0 to 0.4
0 to 0.050
Manganese (Mn), % 0 to 0.55
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 10.5 to 13.5
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0 to 0.5
Residuals, % 0 to 0.25
0