MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. Nickel 200

EN AC-44500 aluminum belongs to the aluminum alloys classification, while nickel 200 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is nickel 200.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
180
Elongation at Break, % 1.1
23 to 44
Fatigue Strength, MPa 110
120 to 350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
70
Tensile Strength: Ultimate (UTS), MPa 270
420 to 540
Tensile Strength: Yield (Proof), MPa 160
120 to 370

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1440
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
69
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
18
Electrical Conductivity: Equal Weight (Specific), % IACS 120
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.5
8.9
Embodied Carbon, kg CO2/kg material 7.7
11
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
42 to 370
Stiffness to Weight: Axial, points 16
11
Stiffness to Weight: Bending, points 55
21
Strength to Weight: Axial, points 29
13 to 17
Strength to Weight: Bending, points 36
14 to 17
Thermal Diffusivity, mm2/s 57
17
Thermal Shock Resistance, points 13
13 to 16

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0
99 to 100
Silicon (Si), % 10.5 to 13.5
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0