MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. SAE-AISI 1070 Steel

EN AC-44500 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1070 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is SAE-AISI 1070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
190 to 230
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
10 to 13
Fatigue Strength, MPa 110
270 to 350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 270
640 to 760
Tensile Strength: Yield (Proof), MPa 160
420 to 560

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1050
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
59 to 86
Resilience: Unit (Modulus of Resilience), kJ/m3 180
470 to 850
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 29
23 to 27
Strength to Weight: Bending, points 36
21 to 24
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 13
21 to 25

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Carbon (C), % 0
0.65 to 0.75
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.0
98.3 to 98.8
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.25
0