MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. C32000 Brass

EN AC-44500 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.1
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 270
270 to 470
Tensile Strength: Yield (Proof), MPa 160
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
1020
Melting Onset (Solidus), °C 580
990
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1050
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 680
Stiffness to Weight: Axial, points 16
7.1
Stiffness to Weight: Bending, points 55
18
Strength to Weight: Axial, points 29
8.8 to 15
Strength to Weight: Bending, points 36
11 to 16
Thermal Diffusivity, mm2/s 57
47
Thermal Shock Resistance, points 13
9.5 to 16

Alloy Composition

Aluminum (Al), % 83.7 to 89.5
0
Copper (Cu), % 0 to 0.2
83.5 to 86.5
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 0 to 0.4
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 10.5 to 13.5
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
10.6 to 15
Residuals, % 0
0 to 0.4