MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. EN 1.4112 Stainless Steel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while EN 1.4112 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is EN 1.4112 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
230
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
20
Fatigue Strength, MPa 75
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 180
750
Tensile Strength: Yield (Proof), MPa 110
430

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1070
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
130
Resilience: Unit (Modulus of Resilience), kJ/m3 80
480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 24
24
Thermal Diffusivity, mm2/s 47
4.1
Thermal Shock Resistance, points 8.0
26

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0 to 0.15
17 to 19
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 0 to 1.0
76.6 to 81.2
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.45
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 7.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.070 to 0.12
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0