MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. Grade CX2M Nickel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
220
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 75
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 180
550
Tensile Strength: Yield (Proof), MPa 110
310

Thermal Properties

Latent Heat of Fusion, J/g 470
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 520
1450
Specific Heat Capacity, J/kg-K 870
430
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 7.7
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
210
Resilience: Unit (Modulus of Resilience), kJ/m3 80
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 47
2.7
Thermal Shock Resistance, points 8.0
15

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
22 to 24
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 0 to 1.0
0 to 1.5
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 0.45
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 5.0 to 7.0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0