MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. SAE-AISI A7 Steel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while SAE-AISI A7 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is SAE-AISI A7 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 180
800 to 2150

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
37
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.7
13
Embodied Energy, MJ/kg 140
200
Embodied Water, L/kg 1070
100

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 17
29 to 77
Strength to Weight: Bending, points 24
25 to 48
Thermal Diffusivity, mm2/s 47
10
Thermal Shock Resistance, points 8.0
27 to 72

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
2.0 to 2.9
Chromium (Cr), % 0 to 0.15
5.0 to 5.8
Copper (Cu), % 3.0 to 5.0
0 to 0.25
Iron (Fe), % 0 to 1.0
81.4 to 87.7
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.4
Nickel (Ni), % 0 to 0.45
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.0 to 7.0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.5 to 1.5
Vanadium (V), % 0
3.9 to 5.2
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0