MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. C22600 Bronze

EN AC-45000 aluminum belongs to the aluminum alloys classification, while C22600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 1.1
2.5 to 33
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 180
330 to 570
Tensile Strength: Yield (Proof), MPa 110
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 470
200
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 520
1000
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81
42

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 80
330 to 1070
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 17
11 to 18
Strength to Weight: Bending, points 24
12 to 18
Thermal Diffusivity, mm2/s 47
52
Thermal Shock Resistance, points 8.0
11 to 19

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.0 to 5.0
86 to 89
Iron (Fe), % 0 to 1.0
0 to 0.050
Lead (Pb), % 0 to 0.3
0 to 0.050
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0
Nickel (Ni), % 0 to 0.45
0
Silicon (Si), % 5.0 to 7.0
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
10.7 to 14
Residuals, % 0
0 to 0.2