MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. C37000 Muntz Metal

EN AC-45000 aluminum belongs to the aluminum alloys classification, while C37000 Muntz Metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is C37000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
100
Elongation at Break, % 1.1
40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 180
400
Tensile Strength: Yield (Proof), MPa 110
160

Thermal Properties

Latent Heat of Fusion, J/g 470
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 520
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
27
Electrical Conductivity: Equal Weight (Specific), % IACS 81
30

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
130
Resilience: Unit (Modulus of Resilience), kJ/m3 80
120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 17
14
Strength to Weight: Bending, points 24
15
Thermal Diffusivity, mm2/s 47
39
Thermal Shock Resistance, points 8.0
13

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.0 to 5.0
59 to 62
Iron (Fe), % 0 to 1.0
0 to 0.15
Lead (Pb), % 0 to 0.3
0.8 to 1.5
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0
Nickel (Ni), % 0 to 0.45
0
Silicon (Si), % 5.0 to 7.0
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
36 to 40.2
Residuals, % 0
0 to 0.4