MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. N06210 Nickel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
220
Elongation at Break, % 1.1
51
Fatigue Strength, MPa 75
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 180
780
Tensile Strength: Yield (Proof), MPa 110
350

Thermal Properties

Latent Heat of Fusion, J/g 470
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 520
1510
Specific Heat Capacity, J/kg-K 870
420
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
85
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 7.7
17
Embodied Energy, MJ/kg 140
250
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 80
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
22
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 24
21
Thermal Shock Resistance, points 8.0
22

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.15
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 0 to 1.0
0 to 1.0
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0 to 0.45
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 5.0 to 7.0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0